
Package: hamlet (via r-universe)
October 15, 2024

Type Package

Title Hierarchical Optimal Matching and Machine Learning Toolbox

Version 0.9.7

Date 2023-08-22

Author Teemu Daniel Laajala <teelaa@utu.fi>

Maintainer Teemu Daniel Laajala <teelaa@utu.fi>

Depends R (>= 3.0.0)

Imports grDevices, graphics, stats, utils

Suggests lme4, nlme, amap, nbpMatching, lattice, lmerTest, xtable,
Cairo, Matrix, MASS

Description Various functions and algorithms are provided here for
solving optimal matching tasks in the context of preclinical
cancer studies. Further, various helper and plotting functions
are provided for unsupervised and supervised machine learning
as well as longitudinal mixed-effects modeling of tumor growth
response patterns.

License GPL (>= 2)

Repository https://syksy.r-universe.dev

RemoteUrl https://github.com/syksy/hamlet

RemoteRef HEAD

RemoteSha 3cd5191ef6a51c86317f9365e6005392b9ac5074

Contents
hamlet-package . 2
extendsymrange . 4
hmap . 5
hmap.annotate . 8
hmap.key . 10
match.allocate . 12
match.bb . 13

1

2 hamlet-package

match.dummy . 15
match.ga . 16
match.mat2vec . 19
match.vec2mat . 21
mem.getcomp . 22
mem.plotran . 23
mem.plotresid . 24
mem.powersimu . 25
mix.binary . 27
mix.fun . 28
mixplot . 29
orxlong . 31
orxwide . 33
smartjitter . 34
vcaplong . 35
vcapwide . 37

Index 40

hamlet-package Hierarchical Optimal Matching and Machine Learning Toolbox

Description

This package provides functions and algorithms for solving optimal matching tasks in the context
of preclinical cancer studies. Further, various help and plotting functions are provided for unsuper-
vised and supervised machine learning as well as longitudinal modeling of tumor growth response
patterns.

Author(s)

Teemu Daniel Laajala

Maintainer: Teemu Daniel Laajala <teelaa@utu.fi>

References

Laajala TD, Jumppanen M, Huhtaniemi R, Fey V, Kaur A, et al. (2016) Optimized design and analy-
sis of preclinical intervention studies in vivo. Sci Rep. 2016 Aug 2;6:30723. doi: 10.1038/srep30723.

Knuuttila M, Yatkin E, Kallio J, Savolainen S, Laajala TD, et al. (2014) Castration induces up-
regulation of intratumoral androgen biosynthesis and androgen receptor expression in orthotopic
VCaP human prostate cancer xenograft model. Am J Pathol. 2014 Aug;184(8):2163-73. doi:
10.1016/j.ajpath.2014.04.010.

hamlet-package 3

Examples

##
Exploring the VCaP dataset provided alongside the 'hamlet' package
##

data(vcapwide)
data(vcaplong)

VCaP Castration-resistant prostate cancer (CRPC) PSA-measurements (and body weight) in wide-format
mixplot(vcapwide[,c("PSAWeek10", "PSAWeek14", "BWWeek10", "Group")], pch=16)
anv <- aov(PSA ~ Group, data.frame(PSA = vcapwide[,"PSAWeek14"], Group = vcapwide[,"Group"]))
summary(anv)
TukeyHSD(anv)
summary(aov(BW ~ Group, data.frame(BW = vcapwide[,"BWWeek14"], Group = vcapwide[,"Group"])))

VCaP Castration-resistant prostate cancer (CRPC) PSA-measurements (and body weight) in long-format
library(lattice)
xyplot(log2PSA ~ DrugWeek | Group, data = vcaplong, type="l", group=ID, layout=c(3,1))
xyplot(BW ~ DrugWeek | Group, data = vcaplong, type="l", group=ID, layout=c(3,1))

##
Example multigroup (g=3) nbp-matching using the branch and bound algorithm,
and subsequent random allocation of submatches to 3 arms
##

Construct an Euclidean distance example distance matrix using 15 observations from the VCaP study
d <- as.matrix(dist(vcapwide[1:15,c("PSAWeek10", "BWWeek10")]))
Matching using the b&b algorithm to submatches of size 3
(which will result in 3 intervention groups)
bb3 <- match.bb(d, g=3)
str(bb3)

solvec <- bb3$solution
matching vector, where each element indicates to which submatch each observation belongs to

Perform an example random allocation of the above submatches,
these will be randomly allocated to 3 arms based on the submatches
set.seed(1)
groups <- match.allocate(solvec)

Illustrate randomization, no baseline differences in these three artificial groups
by(vcapwide[1:15,c("PSAWeek10", "BWWeek10")], INDICES=groups, FUN=function(x) x)

summary(aov(PSAWeek10 ~ groups, data = data.frame(PSAWeek10 = vcapwide[1:15,"PSAWeek10"], groups)))
summary(aov(BWWeek10 ~ groups, data = data.frame(BWWeek10 = vcapwide[1:15,"BWWeek10"], groups)))

##
Example mixed-effects modeling of the longitudinal PSA profiles using
the actual experimental groups
##

exdat <- vcaplong[vcaplong[,"Group"] %in% c("Vehicle", "ARN"),]

4 extendsymrange

library(lme4)
Model fitting using lme4-package
f1 <- lmer(log2PSA ~ 1 + DrugWeek + DrugWeek:ARN + (1 + DrugWeek|ID), data = exdat)

mem.getcomp(f1)

library(lmerTest)
Model term testing using the lmerTest-package
summary(f1)

extendsymrange Extend range of variable limits while retaining a point of symmetricity

Description

This function serves as an alternative to the R function ’extendrange’, when user wishes to conserve
a point of symmetricity for the range. For example, this might be desired when the plot should
be symmetric around the origin x=0, but that the sides need to extend beyond the actual range of
values.

Usage

extendsymrange(x, r = range(x, na.rm = T), f = 0.05, sym = 0)

Arguments

x Vector of values to compute the range for

r The range of values

f The factor by which the range is extended beyond the extremes

sym The defined point of symmetricity

Value

A vector of 2 values for the lower and higher limit of the symmetric extended range

Author(s)

Teemu Daniel Laajala <teelaa@utu.fi>

See Also

extendrange

hmap 5

Examples

set.seed(1)
ex <- rnorm(10)+2

hist(ex, xlim=extendsymrange(ex, sym=0), breaks=100)

hmap Plot-region based heatmap

Description

This function plots heatmap figure based on the normal plot-region. This is useful if the image-
based function ’heatmap’ is not suitable, i.e. when multiple heatmaps should be placed in a single
device.

Usage

hmap(x, add = F,
xlim = c(0.2, 0.8),
ylim = c(0.2, 0.8),
col = heat.colors(10),
border = matrix(NA, nrow = nrow(x), ncol = ncol(x)),
lty = matrix("solid", nrow = nrow(x), ncol = ncol(x)),
lwd = matrix(1, nrow = nrow(x), ncol = ncol(x)),
hclustfun = hclust,
distfun = dist,
reorderfun = function(d, w) reorder(d, w),
textfun = function(xseq, yseq, labels, type = "row", ...)
{ if (type == "col") par(srt = 90);
text(x = xseq, y = yseq, labels = labels, ...);
if (type == "col") par(srt = 0)},
symm = F,
Rowv = NULL,
Colv = if (symm) Rowv else NULL,
leftlim = c(0, 0.2), toplim = c(0.8, 1),
rightlim = c(0.8, 1), bottomlim = c(0, 0.2),
type = "rect",
scale = c("none", "row", "column"),
na.rm = T,
nbins = length(col),
valseq =
seq(from = min(x, na.rm = na.rm),
to = max(x, na.rm = na.rm), length.out = nbins),
namerows = T,
namecols = T,
...)

6 hmap

Arguments

x Matrix to be plotted

add Should the figure be added to the plotting region of an already existing figure

xlim The x limits in which the heatmap is placed horizontally in the plotting region

ylim The y limits in which the heatmap is placed vertically in the plotting region

col Color palette for the heatmap colors

border A matrix of border color definitions (rectangles in the heatmap)

lty A matrix of line type definitions (rectangles in the heatmap)

lwd A matrix of line width definitions (rectangles in the heatmap)

hclustfun The hierarchical clustering function similar to ’stats::heatmap’ implementation.
Should yield a valid ’hclust’ object for a given distance/dissimilarity matrix.

distfun The distance/dissimilarity function similar to ’stats::heatmap’ implementation.
Should yield a valid ’dist’ object for a given data matrix.

reorderfun The function to use to reorder branches of the clustering (notice that same-level
branches in a hierarchical clustering may be permutated without violating the
solution). The default approach from ’stats::heatmap’ is utilized here.

textfun A text function that is used to plot the names of the rows and columns, if de-
sired. The default implementation shows how user could tailor the columns and
rows differently, by turning the column labels around 90-degrees. The parameter
’type’ is used to distinguish between rows and columns.

symm Should the given data matrix be treated as symmetric (has to be a square matrix
if so), by default ’FALSE’.

Rowv The row clustering parameter. If ’NA’ the row hierarchical clustering is com-
pletely omitted. Alternatively, if a numeric vector of ranks, the ordering of
branches is tried to be permutated according to the desired order. This can also
be a pre-computed dendrogram-object.

Colv The column clustering parameter. If ’NA’ the column hierarchical clustering is
completely omitted. Alternatively, if a numeric vector of ranks, the ordering of
branches is tried to be permutated according to the desired order. This can also
be a pre-computed dendrogram-object.

leftlim The horizontal limits of the row hierarchical clustering. The horizontal limits
of the heatmap are a=leftlim[1], b=leftlim[2], c=xlim[1], d=xlim[2] where the
’a’ is where the row dendrogram begins, ’b’ is where the row dendrogram ends,
’c’ is where the heatmap itself begins, and ’d’ is where the heatmap itself ends.
The vertical limits are computed according to ’ylim’ to align correctly with the
heatmap rectangles.

toplim The vertical limits of the row hierarchical clustering. The horizontal limits of
the heatmap are a=ylim[1], b=ylim[2], c=toplim[1], d=toplim[2] where the ’a’
is where the heatmap begins, ’b’ is where the heatmap ends, ’c’ is where the
column dendrogram begins, and ’d’ is where the column dendrogram ends. The
horizontal limits are computed according to ’xlim’ to align correctly with the
heatmap rectangles.

rightlim The horizontal limits for the row texts.

hmap 7

bottomlim The vertical limits for the column texts.

type Type of clustering visualization; while default "rect" provides a rectangular-
angled tree, the alternate option "tri" provides triangular-angled tree.

scale Should data be scaled according to ’row’ or ’column’ (or ’col’) similarly to
’stats::heatmap’.

na.rm Should missing values be removed, by default TRUE.

nbins Number of discrete bins the data is divided into using ’seq(from=min(x), to=max(x),
length.out=nbins)’.

valseq The sequence of values by which the data is binned, typically corresponding to
the above ’nbins’ parameter.

namerows If a single boolean value TRUE, then the default ’rownames(x)’ are plotted to
the right of the rows with the ’textfun’. If it is a vector of length ’nrow(x)’, then
this vector is used for plotting the row names instead.

namecols If a single boolean value TRUE, then the default ’colnames(x)’ are plotted below
the columns with the ’textfun’. If it is a vector of length ’nrow(x)’, then this
vector is used for plotting the column names instead.

... Additional parameters provided to the rectangle plotting function

toplim

bottomlim

rightlimleftlim
xlim

ylim

Author(s)

Teemu Daniel Laajala <teelaa@utu.fi>

See Also

heatmap hmap.key hmap.annotate

Examples

Generate some data
set.seed(1)
r1 <- replicate(30, rnorm(20))
lab <- sample(letters[1:2], 20, replace=TRUE)

8 hmap.annotate

r1[lab==lab[1],] <- r1[lab==lab[1],] + 2
r2a <- replicate(10, rnorm(10))
r2b <- replicate(10, rnorm(10))

Set up a new plot region, notice we have a 2-fold wider x-axis
plot.new()
plot.window(xlim=c(0,2), ylim=c(0,1))

Plot an example plot along with the color key and annotations for our 'lab' vector
h1 <- hmap(r1, add = TRUE)
hmap.key(h1, x1=0.18)
hmap.annotate(h1, rw = lab, rw.wid=c(0.82,0.90))

Plot the rest to show how the coordinates are adjusted to place the heatmap(s) differently
h2a <- hmap(r2a, add = TRUE, xlim=c(1.2, 1.8), leftlim=c(1.0, 1.2),
rightlim=c(1.8,2.0), ylim=c(0.6, 1.0), bottomlim=c(0.5,0.6), Colv=NA)

h2b <- hmap(r2b, add = TRUE, xlim=c(1.2, 1.8), leftlim=c(1.0, 1.2),
rightlim=c(1.8,2.0), ylim=c(0.1, 0.5), bottomlim=c(0.0,0.1), Colv=NA)

Show the normal plot region axes
axis(1, at=c(0.5,1.5), c("A", "B"))

Not run:
Heatmap used as base for the help documentation figure
set.seed(1)
hmap(matrix(rnorm(100), nrow=10), xlim=c(0.2,0.8), ylim=c(0.2,0.8),
leftlim=c(0.0,0.2), rightlim=c(0.8,1.0),
bottomlim=c(0.0,0.2), toplim=c(0.8,1.0))
axis(1); axis(2); title(xlab="x", ylab="y")

End(Not run)

hmap.annotate Add a row and column annotations to a plot-region based heatmap
built with ’hmap’

Description

Annotation of rows or columns in a ’hmap’-plot. By default, rectangles aligned with either rows
or columns are plotted to the right-side or lower-side of the heatmap respectively. User-specified
customizations may be given to change these annotations in positioning or type.

Usage

hmap.annotate(h, rw, rw.n = length(unique(rw)), rw.col = rainbow(rw.n,
start = 0.05, end = 0.5), rw.wid, rw.hei, rw.pch,
rw.x = rep(min(h$rightlim), times =
length(h$rowtext$xseq)), rw.y = h$rowtext$yseq, rw.shift
= c(0.02, 0), cl, cl.n

hmap.annotate 9

= length(unique(cl)), cl.col = rainbow(cl.n, start =
0.55, end = 1), cl.wid, cl.hei, cl.pch, cl.x =
h$coltext$xseq, cl.y = rep(max(h$bottomlim), times =
length(h$coltext$yseq)), cl.shift = c(0, -0.02), ...)

Arguments

h The list of heatmap parameters returned invisibly by the original ’hmap’-call.

rw Annotation vector for rows ’r’, each unique instance is given a different color
(or pch) and plotted right-side of the corresponding heatmap rows

rw.n Number of unique colors (or pch) to give each annotated row

rw.col A vector for color values for unique instances in ’r’ for annotating rows

rw.wid The widths for annotation boxes for each row ’r’

rw.hei The heights for annotation boxes for each row ’r’

rw.pch Alternatively, instead of widths and heights user may specify a symbol ’pch’ to
use for annotating each row

rw.x The x-coordinate locations for the row annotations, by default right side of
heatmap itself

rw.y The y-coordinate locations for the row annotations, by default same vertical
locations as for the heatmap rows

rw.shift Row annotation shift: a vector of 2 values, where first indicates the amount of
x-axis shift desired and the second indicates the amount of y-axis shift

cl Annotation vector for columns ’r’, each unique instance is given a different color
(or pch) and plotted lower-side of the corresponding heatmap columns

cl.n Number of unique colors (or pch) to give each annotated column

cl.col A vector for color values for unique instances in ’c’ for annotating columns

cl.wid The widths for annotation boxes for each column ’c’

cl.hei The heights for annotation boxes for each column ’c’

cl.pch Alternatively, instead of widths and heights user may specify a symbol ’pch’ to
use for annotating each column

cl.x The x-coordinate locations for the column annotations, by default same horizon-
tal locations as for the heatmap columns

cl.y The y-coordinate locations for the column annotations, by default lower side of
heatmap itself

cl.shift Column annotation shift: a vector of 2 values, where first indicates the amount
of x-axis shift desired and the second indicates the amount of y-axis shift

... Additional parameters supplied either to ’rect’ or ’points’ function if user desired
rectangles or ’pch’-based points respectively

Author(s)

Teemu Daniel Laajala <teelaa@utu.fi>

10 hmap.key

See Also

heatmap hmap.key hmap

Examples

Generate some data
set.seed(1)
r1 <- replicate(30, rnorm(20))
lab <- sample(letters[1:2], 20, replace=TRUE)
r1[lab==lab[1],] <- r1[lab==lab[1],] + 2
r2a <- replicate(10, rnorm(10))
r2b <- replicate(10, rnorm(10))

Set up a new plot region, notice we have a 2-fold wider x-axis
plot.new()
plot.window(xlim=c(0,2), ylim=c(0,1))

Plot an example plot along with the color key and annotations for our 'lab' vector
h1 <- hmap(r1, add = TRUE)
hmap.key(h1, x1=0.18)
hmap.annotate(h1, rw = lab, rw.wid=c(0.82,0.90))

Plot the rest to show how the coordinates are adjusted to place the heatmap(s) differently
h2a <- hmap(r2a, add = TRUE, xlim=c(1.2, 1.8), leftlim=c(1.0, 1.2),
rightlim=c(1.8,2.0), ylim=c(0.6, 1.0), bottomlim=c(0.5,0.6), Colv=NA)

h2b <- hmap(r2b, add = TRUE, xlim=c(1.2, 1.8), leftlim=c(1.0, 1.2),
rightlim=c(1.8,2.0), ylim=c(0.1, 0.5), bottomlim=c(0.0,0.1), Colv=NA)

Show the normal plot region axes
axis(1, at=c(0.5,1.5), c("A", "B"))

hmap.key Add a color key to a plot-region based heatmap built with ’hmap’

Description

A continuous color scale key for a heatmap. By default the key is constructed according to the ’h’-
object which is invisibly returned by the original ’hmap’-call. Some customization may be supplied
to position the legend or to customize ticks and style.

Usage

hmap.key(h, x0 = h$leftlim[1], x1 = h$leftlim[2], y0 =
h$toplim[1], y1 = h$toplim[2], xlim = range(h$valseq),
ratio = 0.5, tick = 0.1, at = seq(from =
min(h$valseq), to = max(h$valseq), length.out = 5),
bty = "c", cex = 0.5, pos = 3, offset = c(0,0))

hmap.key 11

Arguments

h The list of heatmap parameters returned invisibly by the original ’hmap’-call.

x0 Coordinates for the color key; left border

x1 Coordinates for the color key; right border

y0 Coordinates for the color key; lower border

y1 Coordinates for the color key; upper border

xlim Value range for the x-axis within the key itself, by default extracted from the
h-object

ratio Ratio between y-axis coordinates to separate the key box to upper color key box
and lower tick and values

tick The vertical length in value ticks

at The values in color key at which to plot ticks and the values at ticks

bty Type of box to plot around the color key

cex The zooming factor for plotting the text and other objects affected by the ’cex’
parameter in ’par’

pos The text alignment and position parameter given to the ’text’ function in the key

offset Allows offsetting legend text by absolute x,y coordinates in relation to ticks

Author(s)

Teemu Daniel Laajala <teelaa@utu.fi>

See Also

heatmap hmap hmap.annotate

Examples

Generate some data
set.seed(1)
r1 <- replicate(30, rnorm(20))
lab <- sample(letters[1:2], 20, replace=TRUE)
r1[lab==lab[1],] <- r1[lab==lab[1],] + 2
r2a <- replicate(10, rnorm(10))
r2b <- replicate(10, rnorm(10))

Set up a new plot region, notice we have a 2-fold wider x-axis
plot.new()
plot.window(xlim=c(0,2), ylim=c(0,1))

Plot an example plot along with the color key and annotations for our 'lab' vector
h1 <- hmap(r1, add = TRUE)
hmap.key(h1, x1=0.18)
hmap.annotate(h1, rw = lab, rw.wid=c(0.82,0.90))

Plot the rest to show how the coordinates are adjusted to place the heatmap(s) differently

12 match.allocate

h2a <- hmap(r2a, add = TRUE, xlim=c(1.2, 1.8), leftlim=c(1.0, 1.2),
rightlim=c(1.8,2.0), ylim=c(0.6, 1.0), bottomlim=c(0.5,0.6), Colv=NA)

h2b <- hmap(r2b, add = TRUE, xlim=c(1.2, 1.8), leftlim=c(1.0, 1.2),
rightlim=c(1.8,2.0), ylim=c(0.1, 0.5), bottomlim=c(0.0,0.1), Colv=NA)

Show the normal plot region axes
axis(1, at=c(0.5,1.5), c("A", "B"))

match.allocate Allocation of matched units to intervention arms

Description

This function allocates units belonging to a single submatch to separate intervention arms. This
ensures that the resulting intervention groups are homogeneous in respect to the variables that were
used to construct the distance/dissimilarity matrix for the non-bipartite matching. The number of
resulting intervention groups is equal to the ’g’ (i.e. submatch size) used in the multigroup non-
bipartite matching.

Usage

match.allocate(xmat)

Arguments

xmat A binary matching matrix or a matching vector given by match.bb-function.

Value

A vector where each element indicates to which group the observation was randomized to. The
group names are "Group_A", "Group_B", "Group_C", ... until ’g’ letters, where ’g’ was the size of
submatches.

Author(s)

Teemu Daniel Laajala <teelaa@utu.fi>

See Also

match.bb match.mat2vec match.vec2mat match.dummy

match.bb 13

Examples

data(vcapwide)

Construct an Euclidean distance example distance matrix using 15 observations from the VCaP study
d <- as.matrix(dist(vcapwide[1:15,c("PSAWeek10", "BWWeek10")]))
Matching using the b&b algorithm to submatches of size 3
(which will result in 3 intervention groups)
bb3 <- match.bb(d, g=3)
str(bb3)

solvec <- bb3$solution
matching vector, where each element indicates to which submatch each observation belongs to

Perform an example random allocation of the above submatches,
these will be randomly allocated to 3 arms based on the submatches
set.seed(1)
groups <- match.allocate(solvec)

Illustrate randomization, no baseline differences in these three artificial groups
by(vcapwide[1:15,c("PSAWeek10", "BWWeek10")], INDICES=groups, FUN=function(x) x)

summary(aov(PSAWeek10 ~ groups, data = data.frame(PSAWeek10 = vcapwide[1:15,"PSAWeek10"], groups)))
summary(aov(BWWeek10 ~ groups, data = data.frame(BWWeek10 = vcapwide[1:15,"BWWeek10"], groups)))

match.bb Branch and Bound algorithm implementation for performing multi-
group non-bipartite matching

Description

This function performs multigroup non-bipartite matching of observations based on a provided dis-
tance/dissimilarity matrix ’d’. The number of elements in each submatch is defined by the parameter
’g’.

Usage

match.bb(d, g = 2, presort = "complete", progress = 1e+05,
bestknown = Inf, maxbranches = Inf, verb = 0)

Arguments

d A distance matrix with NxN elements

g Number of elements per each submatch, i.e. how many observations are always
matched together

presort If hierarchical clustering should be used for an initial guess, hclust method-
options are valid options ("complete", "single", "ward", "average")

progress How many branching operations are done before outputting information to the
user

14 match.bb

bestknown If a best known solution already exists, this can be used to bound branches of
the tree before initiation. The default Inf value causes whole search tree to be
potential solution space.

maxbranches Maximum number of branching operations before returning current best solu-
tion, by default no cutoff is defined.

verb Level of verbosity

Details

See further details in the reference Laajala et al.

Value

The function returns a list of objects, where elements are

branches Number of branching operations during the branch and bound algorithm

bounds Number of bounding operations during the branch and bound algorithm

ends Number of end leaf nodes visited during the branch and bound algorithm

matrix The resulting binary matching matrix where rows and columns sum to g

solution The resulting matching vector where each element indicates the submatch where
the observation was placed

cost Final cost value of the target function in the minimization task

Note

Notice that the solution submatch vector in $solution is not the same as the intervention group
allocation. Submatches should be randomly allocated to intervention arms using the match.allocate-
function.

The package ’nbpMatching’ provides a FORTRAN implementation for computation of paired non-
bipartite matching case (g=2).

Computation may be heavy if the number of observations is high, or the number of within-submatch
pairwise distances to consider is high (increases quadratically as a function of ’g’).

Author(s)

Teemu Daniel Laajala <teelaa@utu.fi>

See Also

match.allocate match.mat2vec match.vec2mat match.dummy

Examples

data(vcapwide)

Construct an Euclidean distance example distance matrix using 15 observations from the VCaP study
d <- as.matrix(dist(vcapwide[1:15,c("PSAWeek10", "BWWeek10")]))

match.dummy 15

bb3 <- match.bb(d, g=3)
str(bb3)

mat <- bb3$matrix
binary matching matrix
solvec <- bb3$solution
matching vector, where each element indicates to which submatch each observation belongs to

mixplot(data.frame(vcapwide[1:15,c("PSAWeek10", "BWWeek10")],
submatch=as.factor(paste("Submatch_",solvec, sep=""))), pch=16, col=rainbow(5))

match.dummy Create dummy individuals or sinks to a data matrix or a dis-
tance/dissimilarity matrix

Description

Dummy observations are allowed in order to make the number of observations dividable by the
number of elements in each submatch, i.e. for pairwise matching the number of observations should
be paired, for triangular matching the number of observations should be dividable by 3, etc. This
can be done either by adding column averaged individuals to the original data frame (parameter
’dat’), or by adding zero distance sinks to the distance/dissimilarity matrix (parameter ’d’). The
latter approach favors dummies being matched to real extreme observations, while the former favors
dummies being matched to close-to-mean real observations.

Usage

match.dummy(dat, d, g = 2)

Arguments

dat A data.frame of the original observations, to which column averaged new dummy
observations are added

d N times N distance/dissimilarity matrix, to which zero distance sinks are added

g The desired number of elements per each submatch, i.e. the size of the clusters.
The number of added dummies is the smallest number of additions that fulfills
(N+dummy)%%g == 0

Value

Depending on if the dat or the d parameter was provided, the function either: dat: adds new averaged
individuals according to column means and then returns the data matrix d: adds zero distance sinks
to the distance/dissimilarity matrix and returns the new distance/dissimilarity matrix

Note

Adding zero distance sinks to the distance matrix or averaged individuals to the original data frame
produce different results and affect the optimal matching task differently.

16 match.ga

Author(s)

Teemu Daniel Laajala <teelaa@utu.fi>

See Also

match.allocate match.mat2vec match.vec2mat match.bb

Examples

data(vcapwide)

exdat <- vcapwide[1:10,c("PSAWeek10", "BWWeek10")]
dim(exdat)
avgdummies <- match.dummy(dat=exdat, g=3)
dim(avgdummies)
Construct an Euclidean distance matrix after adding two dummy individuals
(averaged individuals to the original data matrix)
bb3 <- match.bb(as.matrix(dist(avgdummies)), g=3)
str(bb3)

Construct an Euclidean distance matrix after adding two dummy distances (zero distance sinks)
exd <- as.matrix(dist(vcapwide[1:10,c("PSAWeek10", "BWWeek10")]))
dim(exd)
d <- match.dummy(d=exd, g=3)
dim(d)
10 is not dividable by 3, 2 sinks are added to make d 12x12
bb3 <- match.bb(d, g=3)
str(bb3)

Notice that sinks produce a lot smaller target function costs than averaged individuals

match.ga Non-bipartite matching using the Genetic Algorithm (GA)

Description

An implementation of the Genetic Algorithm for solving non-bipartite matching tasks with cus-
tomizable evolutionary events and parameters

Usage

match.ga(d, g,
pops,
generations = 100,
popsize = 100,
nmutate = 100,
ndeath = 30,
type = "min",
mutate = hamlet:::.ga.mutate,

match.ga 17

breed = hamlet:::.ga.breed,
weight = hamlet:::.ga.weight,
fitness = hamlet:::.ga.fitness,
step = hamlet:::.ga.step,
initialize = hamlet:::.ga.init,
progplot = T,
plot = T,
verb = 0,
progress = 500,
...)

Arguments

d A distance/dissimilarity matrix ’d’

g The size in submatches, as in how many observations are always connected

pops If user wants to specify starting populations, they can be provided here as a
matrix. Each row correspondings to the observations, while columns are the
different solutions (population in the GA). For example, a 10 row 100 column
pops-matrix would be 100 different matching solutions of 10 observations. Each
number in the matrix indicates a different submatch.

generations Number of simulations to run in the GA. In each step, mutations, breeding and
breeding occur according to user’s specified settings, and a new generation is
created out of this.

popsize Number of solutions (=’individuals’) to have in each step of the algorithm.

nmutate Number of mutations to occur in each step. Individuals are sampled with re-
placement, and then given the corresponding number of mutations.

ndeath Number of deaths to occur in each step. Each dead solution (=’individual’)
is then replaced by breeding suitable parents (probability of being a parent
weighted by fitness).

type Type of optimization, can be ’min’ or ’max’.

mutate Mutation function; by default the hamlet internal function ’.ga.mutate’ is used.
This function takes in solution vector ’x’. Two random positions are then swapped,
which could be seen as a form of a point mutation.

breed Breeding function; by default the hamlet internal function ’.ga.breed’ is used.
This function takes in solution vectors ’x’ and ’y’ ,which will be the parents,
and the distance matrix ’d’. The products x*d and y*d are computed, and row-
wise differences are computed between the two matrices. The row with the
highest difference indicates where one of the parents can be most improved, and
this trait is inherited from the other parent.

weight Weighting function; by default the hamlet internal function ’.ga.weight’ is used.
This weight should be correspond to probabilities that the corresponding indi-
viduals will undergo some sort of event (i.e. mutation, death) or participate in
producing offspring (i.e. breed). This probability weight is computed according
to ranks of fitnesses computed in the

18 match.ga

fitness Fitness function; by default the hamlet internal function ’.ga.fitness’ is used.
This should yield the numeric fitness for a solution, indicating how viable the
solution is in relation to the others. In a minimization task the lower fitness
indicates better viability.

step A step function; by default the hamlet internal function ’.ga.step’ is used. The
step function which combines all operations in the GA, in order to produce the
next generation of solutions given the previous one.

initialize Initialization function; by default the hamlet internal function ’.ga.initialize’ is
used. This function should format a set of valid solutions to produce the first
generation in the beginning of the GA.

progplot Should progress be plotted. If true, in every generation index dividable by the
parameter ’progress’, a function of fitnesses over the generations is plotted. The
plot shows development of solution cost quantiles over time.

plot Should the function plot the final quantiles over all the generations.

verb Level of verbosity; -1 indicates omitting of verbal output, 0 indicates normal
level, and +1 indicates debugging/additional information.

progress How often should the function plot and print intermediate information on the
progress.

... Additional parameters for the internal GA functions.

Details

The Genetic Algorithm (GA) is a form of an evolutionary optimization algorithm, where a popula-
tion (a group of solutions to an optimization tasks) reproduce among themselves, die, mutate, and
live on in a simulated environment. As the GA is a generic framework of solution approaches, it
has many adjustable parameters and user may wish to explore many different options for the pop-
ulations (for example in population size, mutation frequencies, fitness functions, drift etc) and also
the evolutionary mechanics (such as breeding technique, types of mutations, and suitability for re-
producing). Here, general default options and mechanics are provided, but it is advisable to explore
different parameters for the particular optimization task in hand to find optimal solutions. If the user
wishes to explore the implementation of the default mechanics, the function implementations are
internally available in the hamlet-package. For example, the mutation function is accessible with
the command: ’ hamlet::.ga.mutate ’.

Value

The returned list compromises of:

• A list of solutions; a matrix ’pops’ which contains the population of solutions in the final
generation of the algorithm, a vector ’fitnesses’ which portrait the corresponding fitnesses to
the columns of ’pops’, and ’weights’ which were the corresponding probabilities to events in
the GA.

• A vector ’bestsol’, for which the fitness function obtained minimum (or maximum) value
during the algorithm.

• A value ’best’, which is the optimum solution cost value observed during the algorithm.

match.mat2vec 19

Note

Notice that end quality of the matching based allocation is heavily dependent on providing a feasible
matrix D. One should carefully consider choice and tuning of the similarity metric. For example,
Euclidean distance without standardization is often not a good choice as it does not normalize the
variance of each variable and emphasis is on baseline variables that have a large relative variance.

Note that the R-package ’GA’ offers a wide range of generalized GA-related tools.

Author(s)

Teemu Daniel Laajala <teelaa@utu.fi>

See Also

match.bb

Examples

Set up a distance matrix and add dummies, then run GA
data(vcapwide)

Construct an Euclidean distance example distance matrix using 15 observations from the VCaP study
d <- as.matrix(dist(vcapwide[1:15,c("PSAWeek10", "BWWeek10")]))
Or rather, z-score transform all input variables first
d2 <- as.matrix(dist(scale(vcapwide[1:15,c("PSAWeek10", "BWWeek10")])))

Notice that random simulations take place, so we will fix the RNG seed for reproducibility
set.seed(1)
Resulting genetic algorithm progression is plotted by default
ga <- match.ga(d2, g=3, generations=60)
str(ga)
Submatches, i.e. similar individuals that ought to be allocated to separate groups
ga[[2]]

match.mat2vec Transform a binary matching matrix to a matching vector

Description

This function transforms a binary matching matrix to a matching vector. A matching vector is of
length N where each element indicates the submatch to which the observation belongs to. No-
tice that this is not the same as the group allocation vector that is provided by the match.allocate-
function. The binary matching matrix is of size N x N where 0 indicates that the observations have
been part of a different submatch, and 1 indicates that the observations have been part of the same
submatch. Diagonal is always 0 although an observation is always in the same submatch with its
self.

20 match.mat2vec

Usage

match.mat2vec(xmat)

Arguments

xmat A binary matching matrix ’xmat’

Value

A matching vector where each element indicates submatch the observation belongs to

Note

Notice that the particular index numbers produced by match.mat2vec may be different to that of the
branch and bound solution vector, but that the submatches shared by observations are common.

Author(s)

Teemu Daniel Laajala <teelaa@utu.fi>

See Also

match.allocate match.bb match.vec2mat match.dummy

Examples

data(vcapwide)

Construct an Euclidean distance example distance matrix using 15 observations from the VCaP study
d <- as.matrix(dist(vcapwide[1:15,c("PSAWeek10", "BWWeek10")]))

bb3 <- match.bb(d, g=3)
str(bb3)

mat <- bb3$matrix
matching vector, where each element indicates to which submatch each observation belongs to

mat
solvec <- match.mat2vec(mat)
which(mat[1,] == 1)
E.g. the first, third and thirteenth observation are part of the same submatch
which(solvec == solvec[1])
Similarly

match.vec2mat 21

match.vec2mat Transform a matching vector to a binary matching matrix

Description

This function allows transforming a matching vector to a binary matching matrix. A matching
vector is of length N where each element indicates the submatch to which the observation belongs to.
Notice that this is not the same as the group allocation vector that is provided by the match.allocate-
function. The binary matching matrix is of size N x N where 0 indicates that the observations have
been part of a different submatch, and 1 indicates that the observations have been part of the same
submatch. Diagonal is always 0 although an observation is always in the same submatch with its
self.

Usage

match.vec2mat(x)

Arguments

x A matching vector ’x’

Value

N times N binary matching matrix, where 0 indicates that the observations have been part of a
different submatch, and 1 indicates that the observations have been part of the same submatch.

Author(s)

Teemu Daniel Laajala <teelaa@utu.fi>

See Also

match.allocate match.mat2vec match.bb match.dummy

Examples

data(vcapwide)

Construct an Euclidean distance example distance matrix using 15 observations from the VCaP study
d <- as.matrix(dist(vcapwide[1:15,c("PSAWeek10", "BWWeek10")]))

bb3 <- match.bb(d, g=3)
str(bb3)

solvec <- bb3$solution
matching vector, where each element indicates to which submatch each observation belongs to

solvec
mat <- match.vec2mat(solvec)

22 mem.getcomp

mat
which(mat[1,] == 1)
E.g. the first, third and thirteenth observation are part of the same submatch
which(solvec == solvec[1])
Similarly

mem.getcomp Extract per-observation components for fixed and random effects of a
mixed-effects model

Description

Assuming a mixed-effects model of form y_fit = Xb + Zu + e, where X is the model matrix for
fixed effects, Z is the model matrix for random effects, and b and u are the fixed and random effects
respectively, this function returns these components per each fitted value y. These may be useful for
model inference and/or diagnostic purposes.

Usage

mem.getcomp(fit)

Arguments

fit A fitted mixed-effects model generated either through the lme4 or the nlme pack-
age.

Details

Notice that per-observation model error is e = Xb + Zu - y_observation. Similarly, the components
Xb and Zu are extracted.

Value

The function returns per-observation model fit components for a mixed-effects model. The return
fields are

Xb Fixed effects component Xb

Zu Random effects component Zu

XbZu Full model fit by summing the above two Xb+Zu

e Model error e

y Original observations y

Author(s)

Teemu Daniel Laajala <teelaa@utu.fi>

mem.plotran 23

See Also

mem.plotran mem.plotresid

Examples

data(vcaplong)

exdat <- vcaplong[vcaplong[,"Group"] %in% c("Vehicle", "ARN"),]

library(lme4)
f1 <- lmer(log2PSA ~ 1 + DrugWeek + DrugWeek:ARN + (1 + DrugWeek|ID), data = exdat)

mem.getcomp(f1)

mem.plotran Plot random effects histograms for a fitted mixed-effects model

Description

This plot creates histogram plots for the columns extracted from random effects from a model fit.
This is useful for model diagnostics, such as observing deviations from normality in the random
effects.

Usage

mem.plotran(fit, breaks = 100)

Arguments

fit A fitted mixed-effects model generated either through the lme4 or the nlme pack-
age.

breaks Number of breaks in the histograms (passed to the ’hist’-function)

Author(s)

Teemu Daniel Laajala <teelaa@utu.fi>

See Also

mem.getcomp, mem.plotresid

24 mem.plotresid

Examples

data(vcaplong)

exdat <- vcaplong[vcaplong[,"Group"] %in% c("Vehicle", "ARN"),]

library(lme4)
f1 <- lmer(log2PSA ~ 1 + DrugWeek + DrugWeek:ARN + (1 + DrugWeek|ID), data = exdat)

ranef(f1) # Histograms are plotted for these columns
mem.plotran(f1)

mem.plotresid Plot residuals of a mixed-effects model along with trend lines

Description

This function plots stylized residuals of a mixed-effects model. It is possible to obtain fitted values
versus errors (XbZu vs e), or original values versus errors (y vs e) in order to obtain different views
to the errors in connection to the observations.

Usage

mem.plotresid(fit, linear = T, type = "XbZu", main, xlab, ylab)

Arguments

fit A fitted mixed-effects model generated either through the lme4 or the nlme pack-
age.

linear Should linear trend lines be drawn to the residual plot

type Type of residual plot; should fitted values (value "XbZu") or original observa-
tions (value "y") be plotted against "e" errors

main Main title

xlab x-axis label

ylab y-axis label

Details

Notice that the typical residual plot is fitted values (type="XbZu") versus errors ("e").

Author(s)

Teemu Daniel Laajala <teelaa@utu.fi>

See Also

mem.getcomp, mem.plotran

mem.powersimu 25

Examples

data(vcaplong)

exdat <- vcaplong[vcaplong[,"Group"] %in% c("Vehicle", "ARN"),]

library(lme4)
f0 <- lmer(log2PSA ~ 1 + DrugWeek + (1 + DrugWeek|ID), data = exdat)
f1 <- lmer(log2PSA ~ 1 + DrugWeek + DrugWeek:ARN + (1 + DrugWeek|ID), data = exdat)
f2 <- lmer(log2PSA ~ 1 + DrugWeek + DrugWeek:ARN + (1|ID) + (0 + DrugWeek|ID), data = exdat)
f3 <- lmer(log2PSA ~ 1 + DrugWeek + DrugWeek:ARN + (1|Submatch) + (0 + DrugWeek|ID), data = exdat)

par(mfrow=c(2,2))
mem.plotresid(f0)
mem.plotresid(f1)
mem.plotresid(f2)
mem.plotresid(f3)

mem.powersimu Power simulations for the fixed effects of a mixed-effects model
through structured bootstrapping of the data and re-fitting of the model

Description

Bootstrap sampling is used to investigate the statistical significance of the fixed effects terms speci-
fied for a readily fitted mixed-effects model as a function of the number of individuals participating
in the study. User either specifies a suitable sampling unit, or it is automatically identified based on
the random effects formulation of a readily fitted mixed-effects model. Per each count of individu-
als in vector N, a fixed number of bootstrapped datasets are generated and re-fitted using the model
formulation on the pre-fitted model. Power is then computed as the fraction of effects identified as
statistically significant out of all the bootstrapped datasets.

Usage

mem.powersimu(fit, N = 4:20, boot = 100, level = NULL, strata = NULL,
default = FALSE, seed = NULL, plot = TRUE, plot.loess = FALSE,
legendpos = "bottomright", return.data = FALSE, verb = 1, ...)

Arguments

fit A fitted mixed-effects model. Should be either a model produced by the lme4-
package, or then a modified lme4-fit such as provided by lmerTest or similar
package that builds on lme4.

N A vector of desired amounts of individuals to be tested, i.e. sample sizes N.
Notice that the N may be either a total N if no strata is spesified, or then an N
value per each substrata if strata is not NULL. See below the parameter ’strata’.

boot Number of bootstrapped datasets to generate per each N value. The total number
of generated data frames in the end will be N times boot.

26 mem.powersimu

level An unambiguous indicator available in the model data frame that indicates each
separate individual unit in the experiment. For example, this may correspond
to a single patient indicator column ID, where each patient has a unique ID
instance. If this parameter is given as NULL, then this function automatically
attempts to identify the best possible level of individual indicators based on the
random effects specified for the model.

strata If any sampling strata should be balanced, it should be indicated here. For ex-
ample, if one is studying the possible effects of an intervention, it is typical to
have an equal number of individual both in the control and in the intervention
arms also in the sampled datasets. It should be then given as an column name
available in the original model data frame. Each strata will be sampled in equal
amounts.

default What is the default statistical significance if a model could not be re-fitted to the
sampled datasets, which may occur for example due to convergence or redun-
dance issues. This defaults to FALSE, which means that a coefficient is expected
to be statistically insignificant if the corresponding model re-fitting fails in lme4.

seed For reproducibility, one may wish to set a numeric seed to produce the exact
same results.

plot If set to TRUE, the function will plot a power curve. Each fixed effects coeffi-
cient is a different curve, with color coding and a legend annotated to separate
which one is which.

plot.loess If plot==TRUE, this plot.loess==TRUE adds an additional loess-smoothed ap-
proximated curve to the existing curves. This is useful if running the simulations
with a low number of bootstrapped samples, as it may help approximate where
the curve reaches critical points, i.e. power = 0.8.

legendpos Position for the legend in plot==TRUE, defaults to "bottomright". Any legal
position similar to provided the function ’legend’ is allowed.

return.data Should one obtain the bootstrapped data instead of bootstrapping and then re-
fitting. This will skip the model re-fitting schema and instead return a list of lists
with the bootstrapped data instead. The outer list corresponds to the values of
’N’, while the inner loop corresponds to the different ’boot’ runs of bootstrap.
This may be useful to inspecting that the schema is sampling correct sampling
units for example, or if bootstrapping is to be used for something else than re-
fitting the lme4-models.

verb Numeric value indicating the level of verbosity; 0=silent, 1=normal, 2=debug-
ging.

... Additional parameters provided for the function.

Details

This function will by default utilizes the lmerTest-package’s Satterthwaite approximation for deter-
mining the p-values for the fixed effects. If this fails, it resorts to the conventional approximation
|t|>2 for significance, which is not accurate, but may provide a reasonable approximation for the
power levels.

mix.binary 27

Value

If return.data==FALSE, this function will return a matrix, where the rows correspond to the different
N values and the columns correspond to the fixed effects. The values [0,1] are the fraction of
bootstrapped datasets where the corresponding fixed effects was detected as statistically significant.

Note

Please note that the example runs in this document are extremely small due to run time constraints
on CRAN. For real power analyses, it is recommended that the N counts would vary e.g. from 5 to
15 with steps of 1 and the amount of bootstrapped datasets would be at least 100.

Author(s)

Teemu D. Laajala

See Also

mem.getcomp

Examples

Use the VCaP ARN data as an example
data(vcaplong)
arn <- vcaplong[vcaplong[,"Group"] == "Vehicle" | vcaplong[,"Group"] == "ARN",]

lme4 is required for mixed-effects models
library(lme4)
Fit an example fixed effects model
fit <- lmer(PSA ~ 1 + DrugWeek + ARN:DrugWeek + (1|ID) + (0 + DrugWeek|ID), data = arn)

For reproducibility, set a seed
set.seed(123)
Run a brief power analysis with only a few selected N values and a limited number of bootstrapping
Balance strata over the ARN and non-ARN (=Vehicle) so that both contain equal count of individuals
power <- mem.powersimu(fit, N=c(3, 6, 9), boot=10, strata="ARN", plot=TRUE)
Power curves are plotted, along with returning the power matrix at:
power

Notice that each column corresponds to a specified fixed effects at the formula
"1 + DrugWeek + ARN:DrugWeek"

mix.binary Binary coding of categorical variables

Description

This function encodes categorical variables (e.g. columns of type ’factor’ or ’character’). U new
columns are created per each such column, where U is the number of unique instances of that
column. The new columns are named OriginalColumnName_U1, OriginalColumnName_U2, etc.

28 mix.fun

Usage

mix.binary(x)

Arguments

x A data.frame or a matrix where categorical columns are to be binary coded.
Categorical columns are assumed to be all non-numeric fields.

Details

A function that codes categorical variables in a dataset into binary variables. This is done in the
following manner: e.g. x = red, green, blue, green –> x_new = 1,0,0, 0,1,0, 0,0,1, 0,1,0 where the
dimensions in x_new are is_red, is_green and is_blue

Value

The function returns a data.frame, where categorical variables have been replaced with 0/1-binary
fields, and numeric fields have been left untouched. Notice that the order of the columns may not
be the original.

Author(s)

Teemu Daniel Laajala <teelaa@utu.fi>

Examples

data(vcapwide)

ex <- mix.binary(vcapwide[,c("Group", "CastrationDate")])
apply(ex, MARGIN=1, FUN=sum)
Notice that each row sums to 2, as two categorical variables were binary coded
and no missing values were present

mix.binary(vcapwide[,c("PSAWeek4", "Group", "CastrationDate")])
Binary coding is only applied to non-numeric fields

mix.fun Apply function to numerical columns of a mixed data.frame while ig-
noring non-numeric fields

Description

This function is intended for applying functions to numeric fields of a mixed type data.frame.
Namely, the function ignores fields that are e.g. factors, and returns FUN function applied to only
the numeric fields.

Usage

mix.fun(x, FUN = scale, ...)

mixplot 29

Arguments

x Data.frame x with mixed type fields

FUN Function to apply, for example ’scale’, ’cov’, or ’cor’

... Additional parameters passed on to FUN

Value

Return values of FUN when applied to numeric columns of ’x’

Author(s)

Teemu Daniel Laajala <teelaa@utu.fi>

See Also

apply

Examples

data(vcapwide)

mix.fun(vcapwide[,c("Group", "PSAWeek4", "PSAWeek10", "PSAWeek14")], FUN=scale)
Column 'Group' is ignored
mix.fun(vcapwide[,c("Group", "PSAWeek4", "PSAWeek10", "PSAWeek14")], FUN=cov, use="na.or.complete")
... is used to pass the 'use' parameter to the 'cov'-function

mixplot Scatterplot for mixed type data

Description

This function plots a scatterplot similar to the default plot-function, with the difference that fac-
tor/character fields in input data.frame are handled as categorical variables. These categorical vari-
ables are color-coded and handled separately in marginal distributions.

Usage

mixplot(x,
main = NA,
match,
func = function(x, y, par)
{ segments(x0 = x[1], y0 = x[2], x1 = y[1], y1 = y[2], col = par)},
legend = T,
col = palette(), na.lines = T,
origin = F,
marginal = F,
lhei,

30 mixplot

lwid,
verb = 0,

...)

Arguments

x A data.frame or a matrix of observations. Typically x should be a data.frame,
where columns are of different types, e.g. some of ’numeric’ and some of ’fac-
tor’ class.

main Main title plotted on top of the figure

match A matching matrix (e.g. produced by hamlet::match.vec2mat) or a matching
vector (e.g. produced by hamlet::match.mat2vec) that indicates with different
values if certain observations should be connected.

func The function to apply to each pair of observations ’x’ and ’y’. By default, it is
a segment line in 2 dimensions (each individual bivariate panel). Segment line
color is indicated by the matching vector or individual element in the matching
matrix. Thus 0-values indicate no line, while other values are used to annotate
submatches. ’par’ is the index of the submatch, and by default indicate the
colors.

legend Should an automated legend be generated

col Colors per observation

na.lines Should lines be drawn to represent one of the variables if the other one is missing
in a 2-dim scatterplot

origin Should the origin x=0, y=0 be separately indicated using lines

marginal Should marginal distributions be drawn in sides of each scatterplot

lhei Heights for bins in the layout

lwid Widths for bins in the layout

verb Level of verbosity: -1<= (no verbosity), 0/FALSE (warnings) or >=1/TRUE
(additional information)

... Additional parameters given to the plot-function

Value

An invisible return of the measurements and plot layout structure (matrix, heights, and widths)

Author(s)

Teemu Daniel Laajala <teelaa@utu.fi>

Examples

data(vcapwide)

mixplot(vcapwide[,c("Group", "PSAWeek4", "PSAWeek10", "PSAWeek14")], marginal=TRUE, pch=16,
main="PSA at weeks 4, 10 and 14 per intervention group")

orxlong 31

orxlong Long-format longitudinal data for the ORX study

Description

Long-format measurements of PSA over the intervention period in the ORX study. Notice that this
data.frame is in suitable format for mixed-effects modeling, where each row should correspond to a
single longitudinal measurement. These measurements are annotated using the individual indicator
fields ’ID’, time fields ’Day’, ’TrDay’, ’Date’, and the response values are contained in raw format
in ’PSA’ or after log2-transformation in ’log2PSA’. Additional fields are provided for group testing
and matched inference in ’Group’, ’Submatch’, and the binary indicators ’ORX+Tx’, ’ORX’, and
’Intact’.

Usage

data("orxlong")

Format

A data frame with 392 observations on the following 11 variables.

ID A unique character indicator for the different individual(s)

PSA Raw longitudinal PSA measurement values in unit (ug/l)

log2PSA Log2-transformed longitudinal PSA measurement values in unit (log2 ug/l)

Day Day since the first PSA measurement. Notice that there is a single time point prior to interven-
tions.

TrDay Day since the interventions began, 0 annotating the point at which surgery was performed
or drug compounds were first given.

Date A date format when the actual measurement was performed

Group The actual intervention groups, after blinded groups were assigned to ’ORX+Tx’, ’ORX’,
or ’Intact’

Submatch The submatches that were assigned based on the baseline variables.

‘ORXTx’ A binary indicator field indicating which measurements belong to the group ’ORX+Tx’

ORX A binary indicator field indicating which measurements belong to the group ’ORX’

Intact A binary indicator field indicating which measurements belong to the group ’Intact’

Details

For mixed-effects modeling, the fields ’ID’, ’PSA’ (or ’log2PSA’), ’TrDay’, and group-specific
indicators should be included.

32 orxlong

Note

Group-testing should be performed so that ’ORX+Tx’ is tested against ’ORX’, in order to infer
possible effects occurring due to ’Tx’ on top of ’ORX’. ’ORX’ should be compared to ’Intact’, in
order to infer if the ’ORX’ surgical procedure has beneficial effects in comparison to intact animals.
For statistical modeling of the intervention effects, one should use observations with the positive
’TrDay’-values, as this indicates the beginning of the interventions.

Source

Laajala TD, Jumppanen M, Huhtaniemi R, Fey V, Kaur A, et al. (2016) Optimized design and analy-
sis of preclinical intervention studies in vivo. Sci Rep. 2016 Aug 2;6:30723. doi: 10.1038/srep30723.

Examples

data(orxlong)
Construct data frames that can be used for testing pairwise group contrasts
orxintact <- orxlong[orxlong[,"Intact"]==1 | orxlong[,"ORX"]==1,
c("PSA", "ID", "ORX", "TrDay", "Submatch")]

orxtx <- orxlong[orxlong[,"ORXTx"]==1 | orxlong[,"ORX"]==1,
c("PSA", "ID", "ORXTx", "TrDay", "Submatch")]

Include only observations occurring post-surgery
orxintact <- orxintact[orxintact[,"TrDay"]>=0,]
orxtx <- orxtx[orxtx[,"TrDay"]>=0,]

Example fits
library(lme4)
library(lmerTest)
Conventional model fits
fit1a <- lmer(PSA ~ 1 + TrDay + ORXTx:TrDay + (1|ID) + (0 + TrDay|ID), data = orxtx)
fit1b <- lmer(PSA ~ 1 + TrDay + ORXTx:TrDay + (1 + TrDay|ID), data = orxtx)
fit2a <- lmer(PSA ~ 1 + TrDay + ORX:TrDay + (1|ID) + (0 + TrDay|ID), data = orxintact)
fit2b <- lmer(PSA ~ 1 + TrDay + ORX:TrDay + (1 + TrDay|ID), data = orxintact)

Collate to matched inference for pairwise observations over the submatches
matched.orx <- do.call("rbind", by(orxintact, INDICES=orxintact[,"Submatch"], FUN=function(z){
z[,"MatchedPSA"] <- z[,"PSA"] - z[z[,"ORX"]==0,"PSA"]
z <- z[z[,"ORX"]==1,]
z

}))
Few examples of matched fits with different model formulations
fit.matched.1 <- lmer(MatchedPSA ~ 0 + TrDay + (1|ID) + (0 + TrDay|ID), data = matched.orx)
fit.matched.2 <- lmer(MatchedPSA ~ 1 + TrDay + (1|ID) + (0 + TrDay|ID), data = matched.orx)
fit.matched.3 <- lmer(MatchedPSA ~ 1 + TrDay + (1 + TrDay|ID), data = matched.orx)
summary(fit.matched.1)
summary(fit.matched.2)
summary(fit.matched.3)
We notice that the intercept term is highly insignificant
if included in the matched model, as expected by baseline balance.
In contrast, the matched intervention growth coefficient is highly
statistically significant in each of the models.

orxwide 33

orxwide Wide-format baseline data for the ORX study

Description

This data frame contains the wide-format data of the ORX study for baseline characteristics of the
individuals participating in the study. Some fields (Volume, PSA, High, BodyWeight, PSAChange)
were used to construct the distance matrix in the original matching-based random allocation of
individuals at baseline, while other variables (Group, Submatch) contain these results.

Usage

data("orxwide")

Format

A data frame with 109 observations on the following 8 variables.

ID A unique character indicator for the different individual(s)
Group After identifying suitable submatches, the data were distributed to blinded intervention

groups. These groups were later then annotated to actual treatments or non-intervention con-
trol groups.

Submatch Submatches identified at baseline using the methodology presented in this package
Volume Tumor volume at baseline in cubic millimeters
PSA Raw baseline PSA measurement values in unit (ug/l)
High The highest dimension in the tumor in millimeters, giving insight into the shape of the tumor
BodyWeight Body weight at baseline in unit (g)
PSAChange A fold-change like change in PSA from the prior measurement defined as: (PSA_current

- PSA_last)/(PSA_last)

Details

Originally, 3-fold weighting of the baseline ’Volume’ and ’PSA’ was used in comparison to ’High’,
’BodyWeight’ and ’PSAChange’ when computing the distance matrix. Furthermore, some individ-
uals were annotated prior to matching for exclusion based on outlierish behaviour. The exclusion
criteria were applied before any interventions were given or the matching was performed. The
excluded tumors had either non-existant PSA, non-detectable tumor volume, or extremely large
tumors (volume above 700 mm^3).

Note

Notice that while normally the submatches would be distributed equally to the experiment groups,
here rarely a single submatch may hold multiple instances from a single group. This is due to
practical constraints in the experiment, that animals had to be manually moved in order to fulfill
groups and to reflect the amount of drug compounds available. Additionally, the original experiment
was performed on 6 intervention groups, while here only 3 are further presented after the baseline
(’ORX+Tx’, ’ORX’ and ’Intact’).

34 smartjitter

Source

Laajala TD, Jumppanen M, Huhtaniemi R, Fey V, Kaur A, et al. (2016) Optimized design and analy-
sis of preclinical intervention studies in vivo. Sci Rep. 2016 Aug 2;6:30723. doi: 10.1038/srep30723.

Examples

data(orxwide)
Construct an example distance matrix based on conventional
Euclidean distance and the baseline characteristics
d.orx <- dist(orxwide[,c("Volume", "PSA", "High", "BodyWeight", "PSAChange")])
Plot a hierarchical clustering of the individuals
plot(hclust(d=d.orx))
This 'd.orx' may then be further processed by downstream experiment
design functions such as match.ga, match.bb, etc.

smartjitter Smart jittering function for deterministic shifting of overlapping val-
ues

Description

This function takes in a vector of measurements and computes overlapping bins of observations,
and applies a jittering function within each overlapping bin.

Usage

smartjitter(x, q = seq(from = 0, to = 1, length.out = 10), type = 1,
amount = 0.1, jitterfuncs = list(function(n) {

(1:n)/(1/amount)
}, function(n) {

(((-1)^c(0:(n - 1))) * (0:(n - 1)))/(1/amount)
}), jits = jitterfuncs[[type]])

Arguments

x The values that should be jittered. Notice that these are used to determine which
are overlapping, and should not be though of as x-axis positions (see example).

q Probability quantiles where the ends of the bins should be placed

type Type of jittering, by default it is used to choose which element (1 or 2) of the
list of jittering functions is chosen as the final jittering function. Customized
functions may be provided to the jitterfuncs-parameter.

amount Amount of jittering (here deterministic shifting) for the jittering function

jitterfuncs List of possible jittering functions for n overlapping values. The jittering func-
tion at list position ’type’ is chosen

jits Final jittering function from the jitterfuncs-list

vcaplong 35

Details

The smart jittering is applied to the x-parameter values, and returns a vector of shifting amounts
per each observation. Notice that in the typical case, parameter ’x’ are the desired response values
e.g. among the y-axis, and the returned value of smartjitter are the amounts of jittering done on the
x-axis of a plot.

Value

The function returns a vector of values with same length as x. The values in this vector indicate
what should be the shifting per each observation, if the observations should be jittered along an
another axis.

Author(s)

Teemu Daniel Laajala <teelaa@utu.fi>

Examples

data(vcapwide)

plot.new()
plot.window(xlim=extendrange(c(0,1)), ylim=extendrange(vcapwide[,"PSAWeek4"]))
y1 <- vcapwide[vcapwide[,"CastrationDate"]=="100413","PSAWeek4"]
y2 <- vcapwide[vcapwide[,"CastrationDate"]=="170413","PSAWeek4"]
points(x=0+smartjitter(y1, type=2, amount=0.02), y=y1)
points(x=1+smartjitter(y2, type=2, amount=0.02), y=y2)
axis(1, at=c(0,1), labels=c("10.04.13", "17.04.13"))
axis(2); box()
title(ylab="PSA at week 4", xlab="Castration batches")

vcaplong Long-format data of the Castration-resistant Prostate Cancer experi-
ment using the VCaP cell line.

Description

The long-format of the VCaP experiment PSA-measurements may be used to model longitudinal
measurements during interventions (Vehicle, ARN, or MDV). Body weights and PSA were mea-
sured weekly during the experiment. PSA concentrations were log2-transformed to make data better
normally distributed.

Usage

data(vcaplong)

36 vcaplong

Format

A data frame with 225 observations on the following 11 variables.

PSA Raw PSA (prostate-specific antigen) measurements with unit (ug/l)

log2PSA Log2-transformed PSA (prostate-specific antigen) measurements with unit (log2 ug/l)

BW Body weights (g)

Submatch A grouping factor for indicating which measurements belong to individuals that were
part of the same submatch prior to interventions

ID A character vector indicating unique animal IDs

Week Week of the experiment, notice that this is not the same as the week of drug administration
(see below)

DrugWeek Week since beginning administration of the drugs

Group Grouping factor for intervention groups of the observations

Vehicle Binary indicator for which observations belonged to the group ’Vehicle’

ARN Binary indicator for which observations belonged to the group ’ARN-509’

MDV Binary indicator for which observations belonged to the group ’MDV3100’

Details

Notice that the long-format is suitable for modeling longitudinal measurements. The grouping
factors ID or Submatch could be used to group observations belonging to a single individual or
matched individuals.

Source

Laajala TD, Jumppanen M, Huhtaniemi R, Fey V, Kaur A, et al. (2016) Optimized design and analy-
sis of preclinical intervention studies in vivo. Sci Rep. 2016 Aug 2;6:30723. doi: 10.1038/srep30723.

Knuuttila M, Yatkin E, Kallio J, Savolainen S, Laajala TD, et al. (2014) Castration induces up-
regulation of intratumoral androgen biosynthesis and androgen receptor expression in orthotopic
VCaP human prostate cancer xenograft model. Am J Pathol. 2014 Aug;184(8):2163-73. doi:
10.1016/j.ajpath.2014.04.010.

Examples

data(vcaplong)

str(vcaplong)
head(vcaplong)

library(lattice)
xyplot(log2PSA ~ DrugWeek | Group, data = vcaplong, type="l", group=ID, layout=c(3,1))
xyplot(BW ~ DrugWeek | Group, data = vcaplong, type="l", group=ID, layout=c(3,1))

vcapwide 37

vcapwide Wide-format data of the Castration-resistant Prostate Cancer experi-
ment using the VCaP cell line.

Description

VCaP cancer cells were injected orthotopically into the prostate of mice and PSA (prostate-specific
antigen) was followed. The animals were castrated on two subsequent weeks, after which the
castration-resistant tumors were allowed to emerge. Since PSA reached pre-castration levels, the
animals were non-bipartite matched and allocated to separate intervention arms (at week 10). 3
different interventions are presented here, with ’Vehicle’ as a comparison point and MDV3100 and
ARN-509 tested for reducing PSA and its correlated tumor size.

Usage

data(vcapwide)

Format

A data frame with 45 observations on the following 34 variables.

CastrationDate A numeric vector indicating week when the animal was castrated, resulting in
steep decrease in PSA and subsequent castration-resistant tumors to emerge.

CageAtAllocation A factorial vector indicating cage labels for each animal at the intervention
allocation.

Group A character vector indicating which intervention group the animal was allocated to in the
actual experiment (3 alternatives).

TreatmentInitiationWeek A character vector indicating at which week the intervention was
started.

Submatch A character vector indicating which submatch the individual was part of the original
non-bipartite matching task.

ID A unique character vector indicating the animals.

PSAWeek2 Numeric vector(s) indicating PSA concentration (ug/l) per each week (2 to 14) of the
experiment.

PSAWeek3 Numeric vector(s) indicating PSA concentration (ug/l) per each week (2 to 14) of the
experiment.

PSAWeek4 Numeric vector(s) indicating PSA concentration (ug/l) per each week (2 to 14) of the
experiment.

PSAWeek5 Numeric vector(s) indicating PSA concentration (ug/l) per each week (2 to 14) of the
experiment.

PSAWeek6 Numeric vector(s) indicating PSA concentration (ug/l) per each week (2 to 14) of the
experiment.

PSAWeek7 Numeric vector(s) indicating PSA concentration (ug/l) per each week (2 to 14) of the
experiment.

38 vcapwide

PSAWeek8 Numeric vector(s) indicating PSA concentration (ug/l) per each week (2 to 14) of the
experiment.

PSAWeek9 Numeric vector(s) indicating PSA concentration (ug/l) per each week (2 to 14) of the
experiment.

PSAWeek10 Numeric vector(s) indicating PSA concentration (ug/l) per each week (2 to 14) of the
experiment.

PSAWeek11 Numeric vector(s) indicating PSA concentration (ug/l) per each week (2 to 14) of the
experiment.

PSAWeek12 Numeric vector(s) indicating PSA concentration (ug/l) per each week (2 to 14) of the
experiment.

PSAWeek13 Numeric vector(s) indicating PSA concentration (ug/l) per each week (2 to 14) of the
experiment.

PSAWeek14 Numeric vector(s) indicating PSA concentration (ug/l) per each week (2 to 14) of the
experiment.

BWWeek0 Numeric vector indicating body weight (g) of the animals per each week (0 to 14) of the
experiment.

BWWeek1 Numeric vector indicating body weight (g) of the animals per each week (0 to 14) of the
experiment.

BWWeek2 Numeric vector indicating body weight (g) of the animals per each week (0 to 14) of the
experiment.

BWWeek3 Numeric vector indicating body weight (g) of the animals per each week (0 to 14) of the
experiment.

BWWeek4 Numeric vector indicating body weight (g) of the animals per each week (0 to 14) of the
experiment.

BWWeek5 Numeric vector indicating body weight (g) of the animals per each week (0 to 14) of the
experiment.

BWWeek6 Numeric vector indicating body weight (g) of the animals per each week (0 to 14) of the
experiment.

BWWeek7 Numeric vector indicating body weight (g) of the animals per each week (0 to 14) of the
experiment.

BWWeek8 Numeric vector indicating body weight (g) of the animals per each week (0 to 14) of the
experiment.

BWWeek9 Numeric vector indicating body weight (g) of the animals per each week (0 to 14) of the
experiment.

BWWeek10 Numeric vector indicating body weight (g) of the animals per each week (0 to 14) of the
experiment.

BWWeek11 Numeric vector indicating body weight (g) of the animals per each week (0 to 14) of the
experiment.

BWWeek12 Numeric vector indicating body weight (g) of the animals per each week (0 to 14) of the
experiment.

BWWeek13 Numeric vector indicating body weight (g) of the animals per each week (0 to 14) of the
experiment.

BWWeek14 Numeric vector indicating body weight (g) of the animals per each week (0 to 14) of the
experiment.

vcapwide 39

Details

The wide-format here presented the longitudinal measurements for PSA and Body Weight per each
column. For modeling the PSA growth longitudinally e.g. using mixed-effects models, see the
vcaplong dataset where the data has been readily transposed into the long-format.

Source

Laajala TD, Jumppanen M, Huhtaniemi R, Fey V, Kaur A, et al. (2016) Optimized design and analy-
sis of preclinical intervention studies in vivo. Sci Rep. 2016 Aug 2;6:30723. doi: 10.1038/srep30723.

Knuuttila M, Yatkin E, Kallio J, Savolainen S, Laajala TD, et al. (2014) Castration induces up-
regulation of intratumoral androgen biosynthesis and androgen receptor expression in orthotopic
VCaP human prostate cancer xenograft model. Am J Pathol. 2014 Aug;184(8):2163-73. doi:
10.1016/j.ajpath.2014.04.010.

See Also

vcaplong

Examples

data(vcapwide)

str(vcapwide)
head(vcapwide)

mixplot(vcapwide[,c("PSAWeek10", "PSAWeek14", "BWWeek10", "Group")], pch=16)
anv <- aov(PSA ~ Group, data.frame(PSA = vcapwide[,"PSAWeek14"], Group = vcapwide[,"Group"]))
summary(anv)
TukeyHSD(anv)
summary(aov(BW ~ Group, data.frame(BW = vcapwide[,"BWWeek14"], Group = vcapwide[,"Group"])))

Index

∗ aplot
hmap, 5
hmap.annotate, 8
hmap.key, 10

∗ cluster
match.bb, 13

∗ datasets
orxlong, 31
orxwide, 33
vcaplong, 35
vcapwide, 37

∗ design
match.allocate, 12
match.bb, 13
mem.powersimu, 25

∗ dplot
extendsymrange, 4
smartjitter, 34

∗ ga
match.ga, 16

∗ hplot
hmap, 5
hmap.annotate, 8
hmap.key, 10
mixplot, 29

∗ manip
match.dummy, 15
match.mat2vec, 19
match.vec2mat, 21
mix.binary, 27
mix.fun, 28

∗ mem
mem.powersimu, 25

∗ package
hamlet-package, 2

∗ power
mem.powersimu, 25

∗ regression
mem.getcomp, 22

mem.plotran, 23
mem.plotresid, 24

apply, 29

extendrange, 4
extendsymrange, 4

hamlet (hamlet-package), 2
hamlet-package, 2
heatmap, 7, 10, 11
hmap, 5, 10, 11
hmap.annotate, 7, 8, 11
hmap.key, 7, 10, 10

match.allocate, 12, 14, 16, 20, 21
match.bb, 12, 13, 16, 19–21
match.dummy, 12, 14, 15, 20, 21
match.ga, 16
match.mat2vec, 12, 14, 16, 19, 21
match.vec2mat, 12, 14, 16, 20, 21
mem.getcomp, 22, 23, 24, 27
mem.plotran, 23, 23, 24
mem.plotresid, 23, 24
mem.powersimu, 25
mix.binary, 27
mix.fun, 28
mixplot, 29

orxlong, 31
orxwide, 33

smartjitter, 34

vcaplong, 35, 39
vcapwide, 37

40

	hamlet-package
	extendsymrange
	hmap
	hmap.annotate
	hmap.key
	match.allocate
	match.bb
	match.dummy
	match.ga
	match.mat2vec
	match.vec2mat
	mem.getcomp
	mem.plotran
	mem.plotresid
	mem.powersimu
	mix.binary
	mix.fun
	mixplot
	orxlong
	orxwide
	smartjitter
	vcaplong
	vcapwide
	Index

